mirror -r -p 60 input.mid output.mid
or
mirror -rp 60 input.mid output.mid. As a demonstration, here are four MIDI files for Bach's Well-tempered Clavier, Book II, prelude 2 in C minor in for orientations:
- Original MIDI file
- Retrograde
- Inverted pitch around middle-C
- Retrograde Inversion
</ol>
Trying mirroring a MIDI file and then repeat the mirroring process
to take the MIDI file back to its original state.
The doTimeMirror() function
(lines 51-69)
reverses time by extracting the largest absolute tick time and
subtracting each
MidiMessage
tick time from that maximum timestamp to reverse the time sequence.
This will place note-offs before their matching note-ons, so the
times of note-ons and their matching note-offs are then swapped.
At the end of the function the
undefined
function is called to reverse messages in each track, as well as
move notes-ons back in front of their matching note-offs.
The doPitchMirror() function
(lines 83-98)
does not require moving any events around in the MIDI file, since
the note-ons and note-offs do not reverse order. Notes on the 10th
MIDI channel (channel "9" from a programming viewpoint) are not
altered since this is the General MIDI drum track channel. The
undefined
function has built in range checking which prevents values other
than 0–127 from incorrectly being inserted into the MIDI
message.
Library functions used in this example:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
#include "MidiFile.h" #include "Options.h" #include <iostream> using namespace std; void doTimeMirror (MidiFile& midifile); void swapLinks (MidiEvent& event); void doPitchMirror (MidiFile& midifile, double pivot); void setMirror (vector<int>& mirror, double pivot); int main(int argc, char** argv) { Options options; options.define("p|pitch|i|inversion=d:60.0", "Do a pitch mirror, reflecting around middle C"); options.define("r|reverse|retrograde=b", "Do a time reversal of the MIDI file"); options.process(argc, argv); if (options.getArgCount() != 2) { cerr << "two MIDI filenames are required.\n"; exit(1); } MidiFile midifile; midifile.read(options.getArg(1)); if (!midifile.status()) { cerr << "Error reading MIDI file " << options.getArg(1) << endl; exit(1); } if (options.getBoolean("pitch")) { doPitchMirror(midifile, options.getDouble("pitch")); if (options.getBoolean("retrograde")) { doTimeMirror(midifile); } } else { doTimeMirror(midifile); } midifile.write(options.getArg(2)); return 0; } ////////////////////////////// // // doTimeMirror -- Reverse the timeline of the MIDI file. Note-ons // and their matching Note-offs are switched. // void doTimeMirror(MidiFile& midifile) { midifile.linkNotePairs(); midifile.joinTracks(); int maxtick = midifile[0].back().tick; int i; for (i=0; i<midifile[0].size(); i++) { midifile[0][i].tick = maxtick - midifile[0][i].tick; } for (i=0; i<midifile[0].size(); i++) { if (!midifile[0][i].isNoteOn()) { continue; } if (midifile[0][i].isLinked()) { swapLinks(midifile[0][i]); } } midifile.splitTracks(); midifile.sortTracks(); } ////////////////////////////// // // doPitchMirror -- Mirror the pitch around a particular note. // If the pivot point has a fractional part, then use the space // between notes as the pivot rather than a partcular note. For // example if the pivot is 60, then 60->60, 61->59, 62->58, etc. // If the pivot is 60.5 (or anything than 60.0 up to 61.0), then the // pivot will be between 60 and 61: 60->61, 61->60, 62->59, etc. // If a note goes out of range, it will be mirrored again off of // the limits of the range. void doPitchMirror(MidiFile& midifile, double pivot) { vector<int> mirror; setMirror(mirror, pivot); for (int i=0; i<midifile.size(); i++) { for (int j=0; j<midifile[i].size(); j++) { if (!midifile[i][j].isNote()) { continue; } if (midifile[i][j].getChannel() == 9) { continue; } midifile[i][j].setKeyNumber(mirror[midifile[i][j][1]]); } } } ////////////////////////////// // // swapLinks -- Reverse the time order of two linked events. // void swapLinks(MidiEvent& event) { MidiEvent* thisnote = &event; MidiEvent* linknote = event.getLinkedEvent(); if (linknote == NULL) { return; } int temptick = thisnote->tick; thisnote->tick = linknote->tick; linknote->tick = temptick; } ////////////////////////////// // // setMirror -- Set the mapping from a pitch to its mirrored pitch. // void setMirror(vector<int>& mirror, double pivot) { mirror.resize(128); double fraction = pivot - (int)pivot; for (int i=0; i<mirror.size(); i++) { if (fraction > 0.0) { mirror[i] = (int)(4 * (int)pivot - 2 * i)/2; } else { mirror[i] = 2 * pivot - i; } // check for out of bounds (but only one cycle on each side). if (mirror[i] < 0) { mirror[i] = -mirror[i]; } if (mirror[i] > 127) { mirror[i] = 127 - mirror[i]; } } }
- MidiEvent::getLinkedEvent
- MidiEvent::isLinked
- MidiEventList::back
- MidiEventList::operator[]
- MidiEventList::size
- MidiFile::joinTracks
- MidiFile::linkNotePairs
- MidiFile::operator[]
- MidiFile::read
- MidiFile::size
- MidiFile::sortTracks
- MidiFile::splitTracks
- MidiFile::status
- MidiFile::write
- MidiMessage::isNoteOn
- MidiMessage::operator[]
- MidiMessage::setKeyNumber
- Options::getArg
- Options::getArgCount
- Options::getBoolean
- Options::getDouble
- Options::process